NISTIR 6890

Fire Resistance Determination and Performance Prediction Research Needs Workshop: Proceedings

William Grosshandler Editor

NISTIR 6890

Fire Resistance Determination and Performance Prediction Research Needs Workshop: Proceedings

William Grosshandler Editor Building and Fire Research Laboratory

September 2002

U.S. Department of Commerce Donald L. Evans, Secretary

Technology Administration *Phillip J. Bond, Under Secretary of Commerce for Technology*

National Institute of Standards and Technology Arden L. Bement, Jr., Director

P. Parallels Between Performance-based Engineering for Fire and Earthquake Hazards Greg Deierlein, Department of Civil and Environmental Engineering Stanford University, Stanford CA

Parallels Between Performance-Based Engineering for Fire and Earthquake Hazards

Greg Deierlein
Stanford University & PEER

NIST – Research Needs for Fire Resistance Determination and Performance Prediction Feb. 19-20, 2002

Final Draft ICC Performance Code (ICC 2000). Objective: To limit the impact of a fire event on the building, its occupants, processes and use; and to limit the impact of an exposing fire on buildings, adjacent properties and processes. PERFORMANCE GROUPS I IV Very Large SEVERE SEVERE HIGH MODERATE (Very Rare) Large (Rare) SEVERE HIGH MODERATE MILD MODERATE MILD MILD (Less Frequen Small MODERATE MILD MILD MILD (Frequent

Traditional Earthquake Engrg. Approach

FEMA 273/356 Performance Assessment Base Shear Demand Very rare events (2%/50yrs) Rare events (10%/50yrs) Occasional events (20%/50yrs) Frequent events (50%/50yrs) Life Sage Structurally Stable

Lateral Deformation

More Explicit Performance Assessment

Key Attributes of Performance Based Approaches

· More Scientific & Transparent

Ref. R.O.Hamburger

- · Address Stakeholder Decision Needs
 - multi-level decision-oriented performance objectives
- · Consistent treatment of risk and uncertainties

PBEE Methodology Components · Decision Variable (\$ loss, downtime, life-safety) non-structural components •Damage Measure & contents (condition assessment, necessary repairs) • Engrg. Demand Param. Structure & foundations (drift, acceleration) • Intensity Measure site ground motions (Sa, Sv, duration ...)

PBEE-Probability Framework Equation $v(DV) = \iiint G(DV | DM) | dG(DM | EDP) | dG(EDP | IM) | d\lambda(IM)$ Impact

Performance (Loss) Models and Simulation

Hazard

IM - Intensity Measure

EDP
DM
Implementation Through
DV - LRFD-like Format: v(DV) - Probability Framework Equation | Parameter | Par

Current Practice: Spectral Acceleration S_a (T_1) USGS Hazard Curves Mapped Pauli Locations Likelihood of Pauli Rupture (rupture size and location) Probabilistic Magnitude Prediction (M)Distance (R) to Size Attenuation Relationships: Sa (T) = fon (MR, T, soil, ...)Static Analysis: $V \propto S_a$ (T_1) Dynamic Analysis: scale records to $S_a(T_1)$?

Damage Measure of Structural Components Fragility Functions EDP DM Fragility Functio

Performance Assessment & Decision Making Damage to Decision Variables: Casualty Rates (Risk of Injury) Direct \$ Loss (Repairs & Content Loss) Schedule Downtime Indirect Loss Decision Process: Economic Modeling (e.g., Benefit-Cost Analysis) Societal - Political Expectations and Constraints Risk Management (risk aversion, insurance vs. mitigation, ...) Decision Arena (single facility, multiple facilities, large inventory)

Intensity Measure?

- · Fire Load, Ignition, Growth Parameters?
 - Fuel load, ventilation, compartment size, ...
- · Compartment Temperature (fire curve)?
- · Steel Temperature?

Engineering Demand Parameters?

- Global Deflections (sag, drift, ...)
- Local Deformations (hinge rotations, strains,...)
- · Component Forces
- "Hidden" effects (residual stresses, loss of material integrity, etc.)

BRE Website, 2001

Structural Simulation (IM to EDP)

- · Material and Geometric NL Response
 - member and frame stability
- · Temperature Loading Input
 - temporal and spatial
- · Temperature Effects
 - thermal expansion
 - material degradation (Fy, E, other ...)

Question: How faithfully can (must?) global analysis model localized degradation (members, connections, composite action, ...)

Damage Measures

- · Safety Collapse or Partial Collapse
- Repair member distortion, out of plumb, deck debonding, other loss in strength/stiffness

SCI Investigation of Broadgate Phase 8 Fire, 1991

Decision Variables

- · Casualties (injury or death)
 - building inhabitants
 - emergency responders
- · Repair Costs
 - contents, nonstructural, structural
 - correlations (water/smoke damage, burning, collapse)
- Downtime (repair time)

Big Issue: Risk tolerance (earthquake versus fire)

Issues: Minimum protection and benefits of higher performance levels

Issues and Needs

- · Comprehensive Methodology
 - consistency with other hazards (earthquake, wind, ...)
 - consistent with evolving code provisions (e.g., stability)
- · Probabilistic Fire Hazard Assessment
 - or scenario (worst case) fire?
- · Codification of Acceptance Criteria
 - explicit Decision Variables (casualty, \$, downtime rates)
 - component strength checks (calibrated)
 - survival duration
- Structural Simulation Tools
- · Validation (lab tests and field reconnaissance)